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INFLUENCE OF VIBRATIONS OF NON-NEWTONIAN FLUID FLOW 

I. M. Astrakhan and S. M. Gadiev UDC 532.5:532.135 

The influence of vibrations on the exit flow of non-Newtonian power-law fluids 
from a vessel through capillaries of various diameters is investigated. It is 
found that the superposition of vibrations can either decrease or increase the 
time to empty the vessel. 

The laminar pulsating motion of non-Newtonian power-law fluids in tubes has been inves- 
tigated earlier [1,2]. It was found that the superposition of pressure pulsations on a steady 
non-Newtonian fluid flow in tubes can have the effect of increasing the average flow rate 
over one oscillatory period for pseudoplastic fluids and decreasing it for dilatant fluids. 

We have conducted experimental investigations on an apparatus consisting of a cylindrical 
glass vessel, at the bottom of which was fused in a glass tube with a length of 15 cm and a 
diameter varying from I to 5 mm. The apparatus was thermostatically regulated and placed on 
a shake table. Vibrations were generated electromechanically in the frequency range from 0 
to 70 Hz with an amplitude of ; mm. The time for a specified quantity of fluid to flow out 
through capillaries of various diameters at a uniform temperature of 25~ was determined. 

The experimental liquids were solutions of polyacrylamide (PAA) Of various concentra- 
tions with the addition of I% surfactant of the type DS-RAS, as well as petroleum. The 
theological curves for flow of the investigated liquids show that they can be regarded as 
pseudoplastic non-Newtonian fluids. 

The experimental results are shown in Figs. l a-c, which give the exit time of a speci- 
fied quantity of liquid from the vessel through capillaries of various diameters as a func- 
tion of the vibration frequency. The concentrations of the PAA solution and the capillary 
diameters are indicated in the figure caption. 

The results indicate that the superposition of vibrations on the exit-flow of the inves- 
tigated liquids is effective at low vibration frequencies (around 10 Hz) and for flow through 
small-diameter capillaries. In the flow of PAA solutions with concentrations of I% or 
higher through capillaries with diameters of 3 nun or more, the vibrations have scarcely any 
influence on the flow process. The effect of the vibrations vanishes for the investigated 
petroelum when the capillary diameter is increased above 4 nm~. 

We now analyze theoretically the flow of non-Newtonian fluids obeying a rheological 
power law from a vessel through vertical tube fused into its bottom. 

The equation of motion of the fluid in the tube has the form 

Ov Op 1 {r%~} §  ( I ) 
D -  

Ot Oz r 

Or yl - -~-r  I (2) 

At the initial time t = 0, the flow velocity of the fluid is equal to zero. For t > 0, 

op pgh (0 
- - - ,  (3) 

Oz I 

where h(t) is the level of the fluid in the vessel and I is the length of the tube. Substi- 
tuting relations (2) and (3) into Eq. (1), we obtain 

I. M. Gubkin Moscow Institute of the Petroleum-Engineering and Gas Industry. Trans- 
lated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 6, pp. 1029-1032, June, 1979. Ori- 
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Fig. I. Exit time t, rain (a) or sec (b, c) versus vibra- 
tion frequency, Hz. a: I) PAA concentration 1.5%, capil- 
lary diameter 2 ram; 2) petroleum, 4 ram; 3) 0.5% PAA, I n~n. 
b: I) 2% PAA, 4 ram; 2) 0.5% PAA, 2 nan; 3) I% PAA, 3 ram; 
4) 2% PAA, 5 ram. c: I) I% PAA, l ram; 2) petroleum, 3 ram. 

P T = ~ (t)  + - -  - -  r a t (  \ Or l I T  ) 
(4) 

, , . I  h(O 1] ~(t) = ~[-F- + 

To determine the unknown fluid level h(t), we use the equation 

S. dh- = q(t) .  (5 )  
d~ 

The volumetric flow rate q(t) is given by the expression 

q (t) = 2~ ~vrdr. (6)  
0 

The b o u n d a r y  c o n d i t i o n s  f o r  Eq. (4) have the  form 

r = a ,  v = A c o s ( ~ ,  

r = O ,  avlOr=O. (7) 

We consider the case in which the viscous forces are much greater than the inertial 
forces; then the inertial term can be neglected in (4), which acquires the form 

--7- aT ~ Or = O. (8) 
We also assume that dr/dr does not change sign, and, integrating Eq. (8) subject to the 
boundary conditions (7), we obtain 

l /n  el a "-~+1 r 
v = A cos mt + ~ - ]  - -  

T h e  f low r a t e  i s  g iven  by the  r e l a t i o n  

/ q(t)  = m 2 Acosmt + (3el+l) a l+ " (9) 
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Fig. 2. Dependence of the dimensionless time 
to empty vessel on the theological parameter 
n for A2 = 0.i and different values of the 
parameter Aa. Solid curve Ax = 0.i, dashed 

curve Aa = 0. 

For the determination of the fluid level h(t) in the vessel, we obtain from (5) and (9) 

--S dh = g a  z Acosr  a ' +  
d--t-- ( 3 n +  1) " ( l 0)  

We i n t r o d u c e  t h e  d i m e n s i o n l e s s  v a r i a b l e s  

= h / l  and x = r  ( 1 1 ) 

Knowing that the average velocity Vav for steady flow of a non-Newtonian power-law fluid 
in a tube is related to the constant pressure gradient q% by the equation 

1 

(~po)l/nrta t+--~n pgH~_pg, 
Vav= ~ (3nq- l )  ' % = - - ~ "  

we obtain from (I0) and (II) 

Here 

d~ _ A l c o s 2 ~  + A2 (~+1) ' / " .  (12)  

.~a 2 2 ~  A ~ a  2 2 n  Vav  
- -  A 2 ~ . - -  - -  

A, S ~ l ' S ~ l 

We s o l v e d  Eq. (12 )  n u m e r i c a l l y  on a c o m p u t e r .  The r e s u l t s  o f  t h e  c a l c u l a t i o n s  ( F i g .  2) 
show t h a t  f o r  s p e c i f i e d  v a l u e s  o f  t h e  p a r a m e t e r s  o f  t h e  p r o b l e m  (A2 = 0 . 1 ,  0 . 5  ~ ~ ~ O) t h e  
t i m e  t o  e m p t y  t h e  v e s s e l  i n  t h e  p r e s e n c e  o f  v i b r a t i o n s  ( s o l i d  c u r v e ,  AI = 0 . 1 )  d e c r e a s e s  f o r  
n < 1 ( p s e u d o p l a s t i c  f l u i d s )  and  i n c r e a s e s  f o r  n > 1 ( d i l a t a n t  f l u i d s ) .  The d a s h e d  c u r v e  
c o r r e s p o n d s  t o  A1 = 0 and  A2 = 0 . 1 ,  i . e . ,  v i b r a t i o n s  a r e  a b s e n t .  We h a v e  t h u s  d e t e r m i n e d  t h e  
f a c t  t h a t  t h e  s u p e r p o s i t i o n  o f  v i b r a t i o n s  on t h e  e x i t - f l o w  p r o c e s s  in  t h e  e a s e  w h e r e  t h e  i n -  
e r t i a l  f o r c e s  can  be  n e g l e c t e d  i n  c o m p a r i s o n  w i t h  t h e  v i s c o u s  f o r c e s  ( a s  i s  t r u e  f o r  low 
v i b r a t i o n  f r e q u e n c i e s )  can  r e s u l t  in  a d e c r e a s e  o f  t h e  v e s s e l  e m p t y i n g  t i m e  f o r  p s e u d o p l a s t i c  
fluids and an increase in that time for dilatant fluids. These theoretical results are con- 
sistent with the experimental. 

NOTATION 

p, density; v, velocity; t, time; p, pressure; z, coordinate measured along tube axis; 
r, coordinated measured along tube radius; Trz , tangential stress; g, free-fall acceleration; 
n, k, theological parameters of fluid; S, cross-sectional area of vessel; a, tube radius; ~, 
frequency; A, amplitude; ~, dimensionless fluid level in vessel; z, dimensionless time; H, 
initial level of fluid in vessel. 
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THEORY OF A PERIODIC LAMINAR BOUNDARY LAYER 

O. N. Bushmarin and V. V. Zyabrikov UDC 532.526.2 

A method is proposed for the analysis of a periodic laminar boundary layer, re- 
fining the conventional methods of Lin, Rayleigh, and Hill and Stenning and pro- 
viding a basis for the unification of those methods. 

Derivation of the Fundamental System of Equations. The equations for a periodic laminar 
boundary layer have the form 

Ou + u Ou + v Ou OU + u OU 02u 

at  ox ay  - o-7 + ' 0Y2 ( I ) 

Ou + Or_ = O, 
Ox Oy 

u - - O ;  v = O  at y = O ;  u-+U(x,  t) a8 y . - - ~ ;  

u =  f(y, t) at x--xy.  (2)  

The v e l o c i t y  a t  the  o u t e r  boundary  o f  the  boundary l a y e r  i s  given by the  e x p r e s s i o n  

U (x, t) = Uo (x) + W (x) cos (~or). 

The absence of a temporal boundary condition in the case of steady-state periodic motion 
renders it impossible, in principle, to solve the problem directly. This fact makes it 
necessary to adopt a specific representation of the time dependence of the functions u and v. 

We investigate the expansions of these functions in Fourier series, written in complex 
form: 

u = uo(x, g ) + ~  . @~_.u,(x, g)exp(si(ot), t 

i (3) 
v = vo (x, y) + Re . ~ v, (x, y) exp (si(ot). ] 

s=l 

Here Uo and Vo are unknown real functions, and u s and v s are unknown complex functions. The 
functions u and v can be represented by Fourier series, since they satisfy the sufficient 
conditions for expansion (periodicity with respect to time and differentiability at any point 
of the domain of definition); see the system (]) and the boundary conditions (2). Assuming 
sufficiently rapid convergence of the series (3), hereinafter we use segments thereof con- 
taining only two harmonics. We substitute these segments into the system (0), writing the 
velocity at the outer boundary of the boundary layer in the form U(x, t) = Uo(x) + Re[W(x). 
exp(imt)]. To take the operator Re for extraction of the real part outside the multiplica- 
tion sign, we invoke the formula 

1 Re (ziz~ + z ~ ) .  R o z l R e ~  ~ ~ 

The overbar is used everywhere to denote the complex conjugate, and zl and z2 denote arbi- 
trary complex numbers. After the appropriate calculations, the first equation of the system 
(1) can be written 

4 

~ R~[Np(uo, u~, u~, vo, ol, v2)exp(picot)] = 0 ,  (4) 
p=O 
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